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Abstract

For a long time, tangent bundle of a manifold and the direct sum of multi-vector fields is a prototype of Z-graded
superalgebra with the Schouten bracket, and the grading is defined by 𝑎 − 1 for 𝑎-multivector fields. Recently, we
noticed the direct sum of differential forms of a manifold has Z-graded superalgebra structure with a super bracket
[𝐴, 𝐵] = (−1)𝑎𝑑(𝐴∧ 𝐵) for 𝑎-form 𝐴, and the grading of 𝑎-form is given by −𝑎 − 1. By Lie derivation, we also
see that

𝑛∑
𝑝=0

Λ𝑝T∗(𝑀) ⊕T(𝑀) has Z-graded Lie superalgebra structure, which is a “super” superalgebra of the

two superalgebra described above.
For a given Z-graded Lie superalgebra, there is a notion of the weighted (co)chain complex and (co)homology
groups. In general, those objects are infinite dimensional and hard to understand the entire properties. If we restrict
the manifold above to a finite dimensional Lie group, and multivector fields and differential forms to (left) invariant
fields and forms, then (co)chain spaces become finite dimensional. Still studying Z-graded Lie super algebra,
which is a generalization of Lie algebra, we encounter complicated manipulation of sign changes depending on
each degree. In this note, we introduce our trial of using Maple software to gather possible equations of “Engel
like” Lie algebra structures by Jacobi identify, then simply solve them and get six possibilities. Getting weighted
chain complex and manipulate its homology groups, we claim that those six possibilities are not isomorphic as
Lie algebras in generic.
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1 Introduction

For a 4-dimensional manifold 𝑀 , if rank 2 distribution 𝐷 satisfies 𝐷[2] := 𝐷 + [𝐷,𝐷] has rank 3 and 𝐷[3] :=

𝐷[2] + [𝐷[2], 𝐷[2]] has rank 4, then the pair (𝑀,𝐷) is called an Engel structure. Here, we apply the above
notion for 4-dimensional Lie algebra 𝔤. The pair (𝔤, 𝐷) is a Engel-type if 𝐷 is a 2-dimensional subspace of
𝔤, and dim𝐷[2] = 3 where 𝐷[2] := 𝐷 + [𝐷,𝐷], and dim𝐷[3] = 4 where 𝐷[3] := 𝐷[2] + [𝐷[2], 𝐷[2]]. From the
dimensional restriction, we see a specific basis 𝑦1, 𝑦2 so that [𝑦1, 𝑦2] = 𝑦3 ∈ [𝐷,𝐷]. We choose 𝑦4 by [𝑦1, 𝑦3] = 𝑦4.
Thus,

[𝑦1, 𝑦2] = 𝑦3 , [𝑦2, 𝑦1] = −𝑦3 [𝑦1, 𝑦3] = 𝑦4 , [𝑦3, 𝑦1] = −𝑦4
[𝑦1, 𝑦4] =

∑︁
𝑖

𝐶1,4,𝑖𝑦𝑖 , [𝑦4, 𝑦1] = −
∑︁
𝑖

𝐶1,4,𝑖𝑦𝑖 [𝑦2, 𝑦3] =
∑︁
𝑖

𝐶2,3,𝑖𝑦𝑖 , [𝑦3, 𝑦2] = −
∑︁
𝑖

𝐶2,3,𝑖𝑦𝑖

[𝑦2, 𝑦4] =
∑︁
𝑖

𝐶2,4,𝑖𝑦𝑖 , [𝑦4, 𝑦2] = −
∑︁
𝑖

𝐶2,4,𝑖𝑦𝑖 [𝑦3, 𝑦4] =
∑︁
𝑖

𝐶3,4,𝑖𝑦𝑖 , [𝑦4, 𝑦3] = −
∑︁
𝑖

𝐶3,4,𝑖𝑦𝑖 .

We let knowMaple2021 about the relations above and check Jacobi identities by ourmaple scriptEngel-try-1.mpl.
(* Jun 19, 2022 dim gg = 4; D is a 2dim plane of gg.
D^{2} := D + [D, D]: D^{3} := D^{2} + [ D^{2}, D^{2} ]:
If dim D^{2} = 3 and dim D^{3} = 4, ( gg , D ) is called an Engel structure.
Now want to find concrete Lie algebra having Engel structure and whose Engel’s.
*)

C := table():
with(difforms): defform(y=1, C=0):
n := 4: ybase := [seq( y[i],i=1..n) ]: gBase := ybase:
read"Sbt-renew-v1.mpl": # SbtN and those are in BIG.mla
# with(‘km/LieAlg/Sbt-renew-v1.mpl‘):
kmread("km/LieAlg/Sbt-renew-v1.mpl"):
#For test kmread("X/Y/zz.mpl");

for i to n do SbtT[ y[i], y[i] ] := 0 od:
SbtT[y[1],y[2]] := y[3]: SbtT[y[2],y[1]] := - y[3]:
SbtT[y[1],y[3]] := y[4] : SbtT[y[3],y[1]] := - y[4] :

SbtT[y[1],y[4]] := add(C[1,4,j]*y[j] , j=1..n):
SbtT[y[4],y[1]] := -add(C[1,4,j]*y[j] , j=1..n):
myVar := NULL: myVar ,= seq( C[1,4,j], j=1..n):

for i from 2 to n do for k from i+1 to n do
SbtT[y[i],y[k]] := add( C[i,k,j]*y[j] , j=1..n) :
SbtT[y[k],y[i]] := -add( C[i,k,j]*y[j] , j=1..n) :
myVar ,= seq( C[i,k,j], j=1..n): od od:

myJac := proc( A,B,C ) local a,b,c;
SbtN(A, SbtN(B,C)) + SbtN(B, SbtN(C,A)) + SbtN(C, SbtN(A,B)) : end proc:
mySkew := proc( A,B ) local a,b,c; SbtN(A, B) + SbtN(B, A) : end proc:
(* ukeComm := NULL:
for i to n do for j to n do ukeComm ,= mySkew( y[i], y[j] ) od od: *)

ukeJ := NULL: for i to n do for j from i+1 to n do for k from j+1 to n do
ukeJ ,= myJac ( y[i], y[j], y[k] ) od od od:
myEqn := NULL:
for i to n do myEqn ,= seq( diff( ukeJ[i], y[j] ), j=1..n ) od:
mySol := solve({myEqn}, {myVar});
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>  >  

(1)(1)
>  >  

res ta r t : read"Enge l - t ry -1 .mpl" :
( * J a c o b i  i d  * ) :  u k e J ;

#NG mySolK := map( simplify, mySol ):
mySolK := map( curry( map, simplify ), [ mySol ] ):
mySolTools := SolveTools[PolynomialSystem]({myEqn}, {myVar});
mySolToolsK := map( curry(map, simplify), [mySolTools] ):
for j to nops( mySolK ) do
mySolInd,mySolDep := selectremove( i-> lhs(i)= rhs(i), mySolK[j] ):
ourSolInd[j] := map( lhs, mySolInd ):
ourSolDep[j] := mySolDep :
mySolToolInd, mySolToolDep := selectremove( i-> lhs(i)= rhs(i), mySolToolsK[j] ):
ourSolToolInd[j] := map( lhs, mySolToolInd ):
ourSolToolDep[j] := mySolToolDep:
od:
(* UKE := table(sparse=NULL): SbtTT := table():
for i to nops([mySol]) do print(i,"", mySol[i]):
for j to n do for k from j+1 to n do

UKE[i] ,= SbtTT [y[j],y[k]] = simplify( SbtT[y[j],y[k]], mySol[i] ) od od:
print(UKE[i]): od: *)
# assign( UKE[1] ): BktT[ y[i], y[j] ]:
# save mySol, SbtT, UKE, "Engel-try-1-out2.txt":
# save ourSolToolInd, ourSolToolDep, ourSolInd, ourSolDep, SbtT,
"Engel-try-1-out4.txt":
(* Important caution. ourSol and ourSotTool are not exactly equal. 1 to 4 are
equal but
5 and 6 are swapped. So, we do use one way, do not mixed using. Jul 14, 2022 *)
(* i := 1: while( X[i] <> [] ) do some job : i := i+1 od: *)

We show how Maple works well.
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>  >  
>  >  

>  >  

(1)(1)

res ta r t : read"Enge l - t ry -1 .mpl" :
( * J a c o b i  i d  * ) :  u k e J :
( *  eqns  f rom Jacob i  id  * ) :  myEqn;  

>  >  
>  >  

(1)(1)

res ta r t : read"Enge l - t ry -1 .mpl" :
( *  s o l v e (  { m y E q n } ,  { m y V a r } )  * ) :  p r i n t (  o u r S o l I n d ) :

(1)(1)
>  >  
>  >  res ta r t : read"Enge l - t ry -1 .mpl" :

pr in t (ourSo lDep[1 ] ) :

>  >  
>  >  

(1)(1)

res ta r t : read"Enge l - t ry -1 .mpl" :
f o r  i  f r o m  3  t o  n o p s (  [  i n d i c e s ( o u r S o l D e p )  ] )  d o  p r i n t (  
ourSolDep[ i ] )  od:
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>  >  

(1)(1)

>  >  res ta r t : read"Enge l - t ry -1 .mpl" :
p p r i n t ( c o n v e r t ( o u r S o l D e p [ 2 ] ,  l i s t ) ) :

As you expect, in the original Engel-try-1.mpl if we declare save at the almost end of the file, we get an output
file Engel-try-1-out4.txt. Preparing the general form of Lie bracket candidate of Engel-type, we gather
Jacobi conditions myEqn. Solving them, we have 6 cases, and denote them as ourSolInd[i] and ourSolDep[i]
for 𝑖 = 1, . . . ,6. As you see, the independent variable 𝐶1,4,4 of the second and third cases is assumed to be
non-zero. ourSolDep[2] looks rather complicated comparing the others. Our main purpose of this note is to
distinguish those 6 cases are Lie algebra isomorphic or not by watching their homology groups in superalgebra
sense. Our strategy is simple, that is, if two Lie algebras 𝔤 and 𝔥 are isomorphic as Lie algebras, their superalgebras
are isomorphic, and so weighted homology groups coincide for each primary weight and the superalgebra type.
Contrary, if the corresponding homology groups are not equal for some same type of superalgebras and for some
primary weight, then the original Lie algebras are not isomorphic.
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Weight 0, Common Headers Weight 1, Common Headers Weight 0, Common Headers[
m 0 1 2 3 4
SpaD 1 4 6 4 1

] [
m 1 2 3 4 5
SpaD 6 24 36 24 6

] [
m 1 2 3 4 5 6
SpaD 4 37 108 142 88 21

]
Weight 0 of Engel ourType 1 Weight 1 of Engel ourType 1 Weight 2 of Engel ourType 1[

KerD 1 4 4 1 0
Bett 1 2 1 0 0

] [
KerD 6 19 19 6 0
Bett 1 2 1 0 0

] [
KerD 4 33 76 68 21 0
Bett 0 1 2 1 0 0

]
Weight 0 of Engel ourType 2 Weight 1 of Engel ourType 2 Weight 2 of Engel ourType 2[

KerD 1 4 3 1 0
Bett 1 1 0 0 0

] [
KerD 6 18 18 6 0
Bett 0 0 0 0 0

] [
KerD 4 33 75 67 21 0
Bett 0 0 0 0 0 0

]
Weight 0 of Engel ourType 3 Weight 1 of Engel ourType 3 Weight 2 of Engel ourType 3[

KerD 1 4 3 1 0
Bett 1 1 0 0 0

] [
KerD 6 18 18 6 0
Bett 0 0 0 0 0

] [
KerD 4 33 75 67 21 0
Bett 0 0 0 0 0 0

]
Weight 0 of Engel ourType 4 Weight 1 of Engel ourType 4 Weight 2 of Engel ourType 4[

KerD 1 4 3 1 0
Bett 1 1 0 0 0

] [
KerD 6 18 18 6 0
Bett 0 0 0 0 0

] [
KerD 4 33 75 67 21 0
Bett 0 0 0 0 0 0

]
Weight 0 of Engel ourType 5 Weight 1 of Engel ourType 5 Weight 2 of Engel ourType 5[

KerD 1 4 3 1 1
Bett 1 1 0 1 1

] [
KerD 6 18 18 6 0
Bett 0 0 0 0 0

] [
KerD 4 33 77 67 23 1
Bett 0 2 2 2 3 1

]
Weight 0 of Engel ourType 6 Weight 1 of Engel ourType 6 Weight 2 of Engel ourType 6[

KerD 1 4 3 1 1
Bett 1 1 0 1 1

] [
KerD 6 18 18 6 0
Bett 0 0 0 0 0

] [
KerD 4 33 77 67 21 2
Bett 0 2 2 0 2 2

]
Table 1: by Engel-mySols-v2.mpl

2 Application of super homology of tangent type
4
⊕
ℓ=1

Λℓ𝔤

We have six types after solving the Jacobi identity conditions. In the type 2 and 3, some coefficients are fractions of
denominator𝐶1,4,4, this means it is non-zero. Looking at those six types, the type 2 seems to be more complicated.
We have a super homology group theory for superalgebra, especially derived from Lie algebras which come from
Engel like structure as we got above. We askMaple to manipulate superalgebra homology groups with the primary
weight 0, 1, or 2. In the following, we show the outputs by Maple for the six types in "generic". In the weight 0
case, the super homology group is just the Lie algebra homology group and it is natural to treat 0-th chain space
𝔤0 = R, and modify the output by Maple and we conclude the Euler number is 0 for the weight 0 case, too.
Then we have the proposition below.

Proposition 2.1 By the three weighted generic results about Betti numbers for each type Type(i) where 𝑖 =
1 . . . 6, those six types are divided into 4 classes Type(1), {Type(2), Type(3), Type(4)}, Type(4) and Type(6), so
that each two Lie algebras are not isomorphic if they belong different classes.

Remark 2.1 We expect to find more refinement if we try the third or more weight cases. The word “generic” in
the theorem above means we just follow Maple formal manipulations. When we want the kernel dimension, we
have two ways: one is solve the linear equations, and the number of free parameters means the kernel dimension.
The other is to fix the Groebner basis whose number shows the rank. For instance, assume we have a linear system
{𝑎𝑥+ 𝑏𝑦 = 0} for 𝑥, 𝑦 are independent variables and 𝑎, 𝑏 are general constants. Maple solve-command shows
𝑥 = − 𝑏𝑦

𝑎
, 𝑦 = 𝑦 and Maple Groebner:-Basis({a x + b y}, tdeg( x,y )) shows [𝑎𝑥+ 𝑏𝑦] formally. We

say those answers are “generic”. If 𝑎 6= 0 or 𝑏 6= 0, then the result is included in the generic solution. But, if
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>  >  
>  >  

(1)(1)

restart :read"DualAlg-Engel-v44.mpl":
print("Weight",wt,"Common Headers."):  (SubMat[0,wt]);

>  >  
>  >  

(1)(1)

restart :read"DualAlg-Engel-v44.mpl":
j  : =  1 :  R i n j i ( j , w t ) :  S u b M a t [ j , w t ] ;

𝑎 = 𝑏 = 0, then the kernel space is 2-dimensional and the Groebner basis is 0-dimensional. We may be careful
Maple does not care about this case.

3 Application of super homology of cotangent type
4
⊕
ℓ=0

Λℓ𝔤∗

We have superalgebras on the exterior algebra of differential forms of manifold . We restrict our attention to the
invariant forms of Lie groups, and have the super homology groups. We refer to [8] about precise definitions, but
in this note, the grading for forms is sharp, namely, the grade of 𝑝-form is −(𝑝+1). On the contrary, the grade
of 𝑝-multi vector field is 𝑝 − 1. Given a (primary) weight 𝑤𝑡, if 𝑤𝑡 is non-negative, then the chain space is empty.
Otherwise we have chain space bounded to |𝑤𝑡 |, which is 1-dimensional, consists of 1 4 · · · 4 1︸      ︷︷      ︸

|𝑤𝑡 |

, which is a kernel

element.
𝑚 1 2 3 4 5

SpaceDim 1 28 12 4 1

KerDim 1 1

Betti 1

We concentrate for the weight −5 here. We follow the definition of 𝑚 -th chain space.
It consists of 𝔥𝑎1−1 ∧ 𝔥

𝑎2
−2 ∧ 𝔥

𝑎3
−3 ∧ 𝔥

𝑎4
−4 ∧ 𝔥

𝑎5
−5 where 𝑎1 + · · ·+ 𝑎5 = 𝑚 and (−1)𝑎1 + · · ·+

(−5)𝑎5 = −5. Directly, we see that 𝑚 <= 5 and 𝑎𝑖 comes from the Young diagrams
of area 5 and length 𝑚. Thus the common table becomes as seen on the right end.
When 𝑚 = 5, the chain space is 𝔥5−1 and 1-dimensional. When 𝑚 = 4, the chain space
is 𝔥3−1 4 𝔥−2 and 4-dimensional. When 𝑚 = 3, the chain space is (𝔥−1 4 𝔥2−2) ⊕ (𝔥2−1 4 𝔥−3) and 12-dimensional.
When 𝑚 = 2, the chain space is (𝔥−2 4 𝔥−3) ⊕ (𝔥−1 4 𝔥−4) and 28-dimensional. When 𝑚 = 1, the chain space
is 𝔥−5 = &^(𝑧1, 𝑧2, 𝑧3, 𝑧4) and 1-dimensional. By manipulating weight (−5) super homology groups below, we
classify 6 types into 3 as Type1, Type2 – Type4, and Type5 – Type 6, which is not new in computation of the
previous section.
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>  >  

(1)(1)

>  >  restart :read"DualAlg-Engel-v44.mpl":
j  : =  2 :  R i n j i ( j , w t ) :  S u b M a t [ j , w t ] ;

"Output of d(z[j]) are too long, so skip them."

>  >  
>  >  

(1)(1)

restart :read"DualAlg-Engel-v44.mpl":
j  : =  3 :  R i n j i ( j , w t ) :  S u b M a t [ j , w t ] ;

(1)(1)

>  >  
>  >  

restart :read"DualAlg-Engel-v44.mpl":
j  : =  4 :  R i n j i ( j , w t ) :  S u b M a t [ j , w t ] ;

(1)(1)

>  >  
>  >  restart :read"DualAlg-Engel-v44.mpl":

j  : =  5 :  R i n j i ( j , w t ) :  S u b M a t [ j , w t ] ;

8



>  >  
>  >  

(1)(1)

restart :read"DualAlg-Engel-v44.mpl":
j  : =  6 :  R i n j i ( j , w t ) :  S u b M a t [ j , w t ] ;

Remark 3.1 Here, we explain about “generic” which was stated in the theorem 2.1 before, by outputs in this
section more precisely. In general, we follow both simple solve and Groebner:-Basis. An easy checkpoint is
denominator or possibility of enumeration of elements of Groebner:-Basis.

Type(1): The case of 𝑚 = 2:

𝑆𝑂𝐿 = 𝑞1 = 𝑞1, . . . , 𝑞11 = 𝑞11, 𝑞13 = 𝑞13, . . . , 𝑞28 = 𝑞28;

𝑞12 = −(𝐶2,3,4𝑞6 −𝐶2,3,4𝑞15 +𝐶2,3,4𝑞20 −𝐶2,3,4𝑞27 − 𝑞17 + 𝑞22 − 𝑞28

− 2

𝐶1,4,4
(−𝐶2,4,4𝑞6 +𝐶2,4,4𝑞15 −𝐶2,4,4𝑞20 +𝐶2,4,4𝑞27))

𝐸𝐺𝐵 = [𝑞6(𝐶1,4,4𝐶2,3,4 − 2𝐶2,4,4) + 𝑞12𝐶1,4,4 + (−𝐶1,4,4𝐶2,3,4 +2𝐶2,4,4)𝑞15 − 𝑞17𝐶1,4,4 + 𝑞20(𝐶1,4,4𝐶2,3,4 − 2𝐶2,4,4)

+ 𝑞22𝐶1,4,4 + (−𝐶1,4,4𝐶2,3,4 +2𝐶2,4,4)𝑞27 − 𝑞28𝐶1,4,4] :

𝐶1,4,4 6= 0 is in generic. If 𝐶1,4,4 = 0 then ORG = EGB = [−2𝐶2,4,4(𝑞6 − 𝑞15 + 𝑞20 − 𝑞27) ], and so if
𝐶2,4,4 6= 0 then the case is in generic. If 𝐶1,4,4 = 0 and 𝐶2,4,4 = 0, then rank is 0 and the kernel dim is 28.

Type(1): The case of 𝑚 = 3:

𝑆𝑂𝐿 = {𝑞1 = 𝑞1, 𝑞2 = 0, 𝑞3 = 0, 𝑞4 = 0, 𝑞5 = 0, 𝑞6 = 0, 𝑞7 = 𝑞7, 𝑞8 = 𝑞8, 𝑞9 = 𝑞9,

𝑞10 = (𝐶2
1,4,4𝐶2,3,4𝑞8 +𝐶1,4,3𝐶2,3,4𝑞8 −𝐶1,4,4𝐶2,3,4𝑞9 −𝐶1,4,4𝐶2,4,4𝑞8 +𝐶2,4,4𝑞9)/𝐶1,4,3,

𝑞11 = −𝐶1,4,4𝐶2,3,4𝑞8 +𝐶2,3,4𝑞9 +𝐶2,4,4𝑞8, 𝑞12 = 0};
𝐸𝐺𝐵 = [𝑞12, 𝑞9(𝐶1,4,3𝐶

2
2,3,4 +𝐶1,4,4𝐶2,3,4𝐶2,4,4 −𝐶2

2,4,4) + 𝑞10(−𝐶1,4,3𝐶1,4,4𝐶2,3,4 +𝐶1,4,3𝐶2,4,4)

+ 𝑞11(−𝐶2
1,4,4𝐶2,3,4 −𝐶1,4,3𝐶2,3,4 +𝐶1,4,4𝐶2,4,4),

(𝐶1,4,3𝐶
2
2,3,4 +𝐶1,4,4𝐶2,3,4𝐶2,4,4 −𝐶2

2,4,4)𝑞8 −𝐶1,4,3𝐶2,3,4𝑞10 + (−𝐶1,4,4𝐶2,3,4 +𝐶2,4,4)𝑞11, 𝑞6, 𝑞5, 𝑞4, 𝑞3, 𝑞2];

Thus, if 𝐶1,4,3 6= 0 then it is generic and rank is 8. If 𝐶1,4,3 = 0, then 𝐸𝐺𝐵 = [𝑞12, 𝐴, 𝐵, 𝑞6, 𝑞5, 𝑞4, 𝑞3, 𝑞2]

where

𝐴 = (𝐶1,4,4𝐶2,3,4 −𝐶2,4,4)(𝐶2,4,4𝑞9 −𝐶1,4,4𝑞11) , and 𝐵= (𝐶1,4,4𝐶2,3,4 −𝐶2,4,4)(𝐶2,4,4𝑞8 − 𝑞11) .

If 𝐶1,4,4𝐶2,3,4 −𝐶2,4,4 = 0, 𝐴 = 𝐵 = 0 and the rank is 6. If 𝐶1,4,4𝐶2,3,4 −𝐶2,4,4 6= 0, then 𝐵 6= 0 and 𝐴′ =

𝐶2,4,4𝑟9 −𝐶1,4,4𝑟11 𝐵
′ = 𝐶2,4,4𝑟8 − 𝑟11. Thewedge product&(̂𝐴′, 𝐵′) = −𝐶2,4,4(𝐶2,4,4&(̂𝑟8, 𝑟9)−𝐶1,4,4&(̂𝑟8, 𝑟10) +

&(̂𝑟9, 𝑟10). Thus, if 𝐶2,4,4 = 0 then 𝐴 = 𝐶1,4,4𝐵 and the rank is 7. If 𝐶2,4,4 6= 0 then 𝐴 and 𝐵 are linearly
independent and the rank is 8 (in generic).
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Weight 6, Common Headers Weight 7, Common Headers[
m 2 3 4 5 6
SpaD 38 32 12 4 1

] [
m 2 3 4 5 6 7
SpaD 28 76 32 12 4 1

]
Weight 6 of Engel ourType 1 Weight 7 of Engel ourType 1[

KerD 38 12 4 2 1
Bett 18 4 2 2 1

] [
KerD 28 50 10 4 2 1
Bett 4 28 2 2 2 1

]
Weight 6 of Engel ourType 2 Weight 7 of Engel ourType 2[

KerD 38 10 3 1 1
Bett 16 1 0 1 1

] [
KerD 28 50 9 3 1 1
Bett 4 27 0 0 1 1

]
Weight 6 of Engel ourType 3 Weight 7 of Engel ourType 3[

KerD 38 12 3 1 1
Bett 18 3 0 1 1

] [
KerD 28 52 9 3 1 1
Bett 6 29 0 0 1 1

]
Weight 6 of Engel ourType 4 Weight 7 of Engel ourType 4[

KerD 38 10 3 1 1
Bett 16 1 0 1 1

] [
KerD 28 50 9 3 1 1
Bett 4 27 0 0 1 1

]
Weight 6 of Engel ourType 5 Weight 7 of Engel ourType 5[

KerD 6 13 3 1 1
Bett 19 4 0 1 1

] [
KerD 28 53 10 3 1 1
Bett 7 31 1 0 1 1

]
Weight 6 of Engel ourType 6 Weight 7 of Engel ourType 6[

KerD 38 11 3 1 1
Bett 17 2 0 1 1

] [
KerD 28 53 10 3 1 1
Bett 7 31 1 0 1 1

]
Table 2: by DualAlg-Engel-v44.mpl

Type(1): Other cases are in generic.

By the same discussion, we have checked the types 2, 3, 5 and 6 are only generic. For the types 2 and 3, 𝐶1,4,4 6= 0

is assumed.

Type(4): The case of 𝑚 = 2: The kernel condition is [−2𝐶2,4,4(𝑞6 − 𝑞15 + 𝑞20 − 𝑞27)]. So if 𝐶2,4,4 6= 0

then the kernel dimension is 27 and the rank is 1 (in generic). If 𝐶2,4,4 = 0 then the kernel dimension is 28
and the rank is 0.

Type(4): Other cases are in generic.

4 Cases for the extended superalgebra
4
⊕
ℓ=0

Λℓ𝔤∗ ⊕ 𝔤

In [8], we know that 𝔤 ⊕
4
⊕
ℓ=0

Λℓ𝔤∗ is a super superalgebra of
4
⊕
ℓ=0

Λℓ𝔤∗ by using Lie derivation, in more general
context. In this section, we try and see the homology groups of those extended superalgebras for each Engel-like
Lie algebra 𝔤. The following output by Maple2021, which are drove by ZeroPlus-Engel-v3.mpl and are shown
below, implies that six types are divided into 5 classes. Right now, type 2 and type 4 have the same table and are
not distinguished on this job. However, using other enhanced superalgebras with the weight −3 in this section, we
conclude those six types are not isomorphic as Lie algebras. Thus, we claim the next theorem.

Theorem 4.1 The six types, which come from Lie algebras axioms, are mutually not isomorphic in generic.

Remark 4.1 When the weight is −2, the output on the left hand side below says nothing about Type 2 and Type
4. The weight −3 output on the right hand side claim that six types are mutually not isomorphic as Lie algebras.
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Weight 2, Common Headers Weight 3, Common Headers[
m 1 2 3 4 5 6
SpaD 4 17 28 22 8 1

] [
m 1 2 3 4 5 6 7
SpaD 6 28 53 52 28 8 1

]
Weight 2 of Engel ourType 1 Weight 3 of Engel ourType 1[
KerD 4 13 16 10 4 1
Bett 0 1 4 6 4 1

] [
KerD 6 26 33 28 16 6 1
Bett 4 6 9 16 14 6 1

]
Weight 2 of Engel ourType 2 Weight 3 of Engel ourType 2[
KerD 4 13 17 10 4 1
Bett 0 2 5 6 4 1

] [
KerD 6 25 28 25 13 5 1
Bett 3 0 1 10 10 5 1

]
Weight 2 of Engel ourType 3 Weight 3 of Engel ourType 3[
KerD 4 13 18 10 4 1
Bett 0 3 6 6 4 1

] [
KerD 6 25 30 25 13 5 1
Bett 3 2 3 10 10 5 1

]
Weight 2 of Engel ourType 4 Weight 3 of Engel ourType 4[
KerD 4 13 17 10 4 1
Bett 0 2 5 6 4 1

] [
KerD 6 25 29 25 13 5 1
Bett 3 1 2 10 10 5 1

]
Weight 2 of Engel ourType 5 Weight 3 of Engel ourType 5[
KerD 4 13 18 10 5 1
Bett 0 3 6 7 5 1

] [
KerD 6 25 30 25 16 5 1
Bett 3 2 3 13 13 5 1

]
Weight 2 of Engel ourType 6 Weight 3 of Engel ourType 6[
KerD 4 14 16 10 5 1
Bett 1 2 4 7 5 1

] [
KerD 6 25 29 25 16 5 1
Bett 3 1 2 13 13 5 1

]
Table 3: by ZeroPlus-Engel-v3.mpl

5 Characteristic foliations

There is a notion of characteristic foliations in Engel theory, which is rank 1 distribution 𝔏 of Engel distribution
𝐷 satisfying [𝔏, 𝐷2] ⊂ 𝐷2 where 𝐷2 := 𝐷 + [𝐷,𝐷] (, and 𝐷3 := 𝐷2 + [𝐷2, 𝐷2]). In our six cases, they are given
by 𝑎𝑦1 + 𝑏𝑦2 for mySol[3], and 𝐶2,3,4𝑦1 − 𝑦2 for the others, up to constant. It will be interesting to study their
contributions to super homology discussion.

6 Another approach of finding Engel-like structures

So far, we studied Engel-like structures first fix dimensional conditions and next check Lie algebra structure. As
[4] points out, there is a complete classification list of 4-dimensional Lie algebra by [10]. Since we unfortunately
do not have access to the original paper [10], we use the list in [4].

Type[1] = {[𝑦2, 𝑦4] = 𝑦1, [𝑦3, 𝑦4] = 𝑦2}; Type[2] = {[𝑦1, 𝑦4] = 𝑎𝑦1, [𝑦2, 𝑦4] = 𝑦2, [𝑦3, 𝑦4] = 𝑦2 + 𝑦3};
Type[3] = {[𝑦1, 𝑦4] = 𝑦1, [𝑦3, 𝑦4] = 𝑦2}; Type[4] = {[𝑦1, 𝑦4] = 𝑦1, [𝑦2, 𝑦4] = 𝑦1 + 𝑦2, [𝑦3, 𝑦4] = 𝑦2 + 𝑦3};
Type[5] = {[𝑦1, 𝑦4] = 𝑦1, [𝑦2, 𝑦4] = 𝑎𝑦2, [𝑦3, 𝑦4] = 𝑏𝑦3, where 𝑎𝑏 6= 0};
Type[6] = {[𝑦1, 𝑦4] = 𝑎𝑦1, [𝑦2, 𝑦4] = 𝑏𝑦2 − 𝑦3, [𝑦3, 𝑦4] = 𝑦2 + 𝑏𝑦3, where 𝑎 6= 0 and 𝑏 ≥ 0};
Type[7] = {[𝑦1, 𝑦4] = 2𝑦1, [𝑦2, 𝑦3] = 𝑦1, [𝑦2, 𝑦4] = 𝑦2, [𝑦3, 𝑦4] = 𝑦2 + 𝑦3};
Type[8] = {[𝑦2, 𝑦3] = 𝑦1, [𝑦2, 𝑦4] = 𝑦2, [𝑦3, 𝑦4] = −𝑦3};
Type[9] = {[𝑦1, 𝑦4] = (1+ 𝑏)𝑦1, [𝑦2, 𝑦3] = 𝑦1, [𝑦2, 𝑦4] = 𝑦2, [𝑦3, 𝑦4] = 𝑏𝑦3, where − 1 < 𝑏 5 1};
Type[10] = {[𝑦2, 𝑦3] = 𝑦1, [𝑦2, 𝑦4] = −𝑦3, [𝑦3, 𝑦4] = 𝑦2};
Type[11] = {[𝑦1, 𝑦4] = 2𝑎𝑦1, [𝑦2, 𝑦3] = 𝑦1, [𝑦2, 𝑦4] = 𝑎𝑦2 − 𝑦3, [𝑦3, 𝑦4] = 𝑦2 + 𝑎𝑦3};
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Type[12] = {[𝑦1, 𝑦3] = 𝑦1, [𝑦1, 𝑦4] = −𝑦2, [𝑦2, 𝑦3] = 𝑦2, [𝑦2, 𝑦4] = 𝑦1};

In this section, we first fix each 4-dimensional Lie algebra and try to find 2-dimensional subspace 𝐷 satisfying
Engel-like structure. We prepare a small proposition.

Proposition 6.1 Let 𝔤 be a 4-dimensional Lie algebra with bracket relations by a basis (𝑦1, . . . , 𝑦4).
Take a 2-dimensional plane 𝐷 where 𝑤1 =

∑4
𝑖=1 𝑝𝑖𝑦𝑖 and 𝑤2 =

∑4
𝑖=1 𝑞𝑖𝑦𝑖 are its basis. Put 𝑤3 = [𝑤1, 𝑤2] and

𝑤4 = [𝑤1, 𝑤3].
If {𝑤1, 𝑤2, 𝑤3} and {𝑤1, 𝑤2, 𝑤3, 𝑤4} are linearly independent, i.e., 𝑤1 ∧𝑤2 ∧𝑤3 6= 0 and 𝑤1 ∧𝑤2 ∧𝑤3 ∧𝑤4 6= 0

for some {𝑝𝑖}4𝑖=1, {𝑞𝑖}
4
𝑖=1, then (𝔤, 𝐷) is an Engel-like structure.

In this note, we call the scalar (𝑤1 ∧𝑤2 ∧𝑤3 ∧𝑤4)/(𝑦1 ∧ 𝑦2 ∧ 𝑦3 ∧ 𝑦4) above by theE-l-C (Engel-like coefficient).

Using the notation Det(𝑖, 𝑗) = 𝑝𝑖𝑞 𝑗 − 𝑝 𝑗𝑞𝑖 =

�����𝑝𝑖 𝑝 𝑗

𝑞𝑖 𝑞 𝑗

�����, the Engel-like coefficient of Lie algebras Type[i] (i=1..12)
are given as follows.

E-l-C of Type[1] = 𝑝4Det(3,4)3 E-l-C of Type[2] = (𝑎 − 1)2𝑝4Det(1,4)Det(3,4)2

E-l-C of Type[3] = 𝑝4Det(1,4)Det(3,4)2 E-l-C of Type[4] = 𝑝4Det(3,4)3

E-l-C of Type[5] = (𝑎 − 1)(𝑏 − 1)(𝑎 − 𝑏)𝑝4Det(1,4)Det(2,4)Det(3,4)

E-l-C of Type[6] = ((𝑎 − 𝑏)2 +1)𝑝4Det(1,4)(Det(2,4)2 +Det(3,4)2)

E-l-C of Type[7] = Det(3,4)2(𝑝4Det(1,4)+ 𝑝4Det(2,3)+ 𝑝3Det(3,4))

E-l-C of Type[8] = −2Det(2,4)Det(3,4)(𝑝4Det(1,4)− 𝑝3Det(2,4)− 𝑝2Det(3,4))

E-l-C of Type[9] = −(𝑏 − 1)Det(2,4)Det(3,4)
(
𝑝3Det(1,4)+ 𝑏(𝑝4Det(1,4)− 𝑝2Det(3,4))

)
E-l-C ofType[10] = (Det(2,4)2 +Det(3,4)2)(𝑝4Det(1,4)+ 𝑝2Det(2,4)+ 𝑝3Det(3,4))

E-l-C of Type[11] = (Det(2,4)2 +Det(3,4)2)(𝑎2𝑝4Det(1,4)+ 𝑎𝑝4Det(2,3)+ 𝑝4Det(1,4)+ 𝑝2Det(2,4)+ 𝑝3Det(3,4))

E-l-C of Type[12] = 𝑝4Det(3,4)
(
Det(1,3)2 +Det(1,4)2 +Det(2,3)2 +Det(2,4)2 +2Det(1,2)Det(3,4)

)
In the case of Type[1], taking 𝑝 = [0,0,0,1] and 𝑞 = [0,0,1,0], i.e., 𝑤1 = 𝑦4 and 𝑤2 = 𝑦3 give an Engel-like
structure.
In the case of Type[2], if 𝑎 = 1, then there is no Engel-like structure. Assume 𝑎 6= 1, then 𝑝 = [0,0,0,1] and
𝑞 = [1,0,1,0] give an Engel-like structure.
In the case of Type[3], 𝑝 = [0,0,0,1] and 𝑞 = [1,0,1,0] give an Engel-like structure like as the second half of
Type[2].
The case Type[4] is the same with Type[1].
In the case of Type[5], if (𝑎 − 1)(𝑏 − 1)(𝑎 − 𝑏) = 0, then there is no Engel-like structure. Otherwise, 𝑝 = [0,0,0,1]

and 𝑞 = [1,0,1,0] give an Engel-like structure.
In the case of Type[6], 𝑝 = [0,0,0,1] and 𝑞 = [1,1,1,0] give an Engel-like structure.
In the case of Type[7], 𝑝 = [0,0,1,1] and 𝑞 = [0,0,0,1] give an Engel-like structure.
In the case of Type[8], 𝑝 = [0,0,0,1] and 𝑞 = [1,1,1,0] give an Engel-like structure.
In the case of Type[9], if 𝑏 − 1 = 0 then there is noEngel-like structure. Otherwise, 𝑝 = [1,1,1,1] and 𝑞 = [0,0,0,1]

give an Engel-like structure.
In the case of Type[10], 𝑝 = [0,0,0,1] and 𝑞 = [1,0,1,0] give an Engel-like structure.

12



In the case of Type[11], 𝑝 = [0,0,1,0] and 𝑞 = [0,0,0,1] give an Engel-like structure.
In the case of Type[12], 𝑝 = [0,1,0,1] and 𝑞 = [0,1,1,0] give an Engel-like structure.
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A Table of bracket for Engel-like Lie algebras

ourSolDep[1]

[𝑦1, 𝑦4] = 𝐶1,4,3𝑦3 +𝐶1,4,4𝑦4 [𝑦2, 𝑦3] = (−𝐶1,4,4𝐶2,3,4 +𝐶2,4,4)𝑦3 +𝐶2,3,4𝑦4

[𝑦2, 𝑦4] = (𝐶1,4,3𝐶2,3,4)𝑦3 +𝐶2,4,4𝑦4 [𝑦3, 𝑦4] = 0

ourSolDep[2]

[𝑦1, 𝑦4] =
𝐶2
1,4,4 +4𝐶1,4,3

8

(
−(𝐶1,4,4𝐶2,3,4 − 2𝐶2,4,4)𝑦1 −𝐶1,4,4𝑦2

)
+𝐶1,4,3𝑦3 +𝐶1,4,4𝑦4
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[𝑦2, 𝑦3] =
(𝐶2

1,4,4 +4𝐶1,4,3)(𝐶1,4,4𝐶2,3,4 −𝐶2,4,4)

2𝐶2
1,4,4

(−(𝐶1,4,4𝐶2,3,4 − 2𝐶2,4,4)𝑦1 −𝐶1,4,4𝑦2)

+ (−𝐶1,4,4𝐶2,3,4 +𝐶2,4,4)𝑦3 +𝐶2,3,4𝑦4

[𝑦2, 𝑦4] = −1
8
(𝐶1,4,4𝐶2,3,4 − 2𝐶2,4,4)(𝐶

2
1,4,4 +4𝐶1,4,3)𝐶2,3,4𝑦1 −

1

8
(𝐶2

1,4,4 +4𝐶1,4,3)𝐶1,4,4𝐶2,3,4𝑦2

− 1

2𝐶1,4,4
(𝐶3

1,4,4𝐶2,3,4 +2𝐶1,4,3𝐶1,4,4𝐶2,3,4 −𝐶2
1,4,4𝐶2,4,4 − 4𝐶1,4,3𝐶2,4,4)𝑦3 +𝐶2,4,4𝑦4

[𝑦3, 𝑦4] =
(𝐶2

1,4,4 +4𝐶1,4,3)(𝐶1,4,4𝐶2,3,4 −𝐶2,4,4)

8𝐶2
1,4,4

(
(𝐶1,4,4𝐶2,3,4 −𝐶2,4,4)(𝐶

2
1,4,4 +4𝐶1,4,3)𝑦1

+𝐶1,4,4(𝐶
2
1,4,4 +4𝐶1,4,3)𝑦2 +2𝐶2

1,4,4𝑦3 +4𝐶1,4,4𝑦4

)
ourSolDep[3]

[𝑦1, 𝑦4] = −𝐶1,4,2𝐶2,4,4

𝐶1,4,4
𝑦1 +𝐶1,4,2𝑦2 +𝐶1,4,3𝑦3 +𝐶1,4,4𝑦4 [𝑦2, 𝑦3] =

𝐶2,4,4

𝐶1,4,4
𝑦4

[𝑦2, 𝑦4] =
𝐶2,4,4

𝐶2
1,4,4

(
−𝐶1,4,2𝐶2,4,4𝑦1 +𝐶1,4,2𝐶1,4,4𝑦2 +𝐶1,4,3𝐶1,4,4𝑦3 +𝐶2

1,4,4𝑦4

)
[𝑦3, 𝑦4] = 0

ourSolDep[4]

[𝑦1, 𝑦4] = 0 [𝑦2, 𝑦3] = 𝐶2,3,1𝑦1 +𝐶2,4,4𝑦3 +𝐶2,3,4𝑦4

[𝑦2, 𝑦4] = 𝐶2,4,4𝑦4 [𝑦3, 𝑦4] = 0

ourSolDep[5]

[𝑦1, 𝑦4] = (−𝐶1,4,2𝐶2,3,4)𝑦1 +𝐶1,4,2𝑦2 +𝐶1,4,3𝑦3 [𝑦2, 𝑦3] = 𝐶2,3,4𝑦4

[𝑦2, 𝑦4] = (−𝐶1,4,2𝐶
2
2,3,4)𝑦1 + (𝐶1,4,2𝐶2,3,4)𝑦2 + (𝐶1,4,3𝐶2,3,4)𝑦3 [𝑦3, 𝑦4] = 0

ourSolDep[6]

[𝑦1, 𝑦4] = 𝐶1,4,3𝑦3 [𝑦2, 𝑦3] = 𝐶2,3,1𝑦1 +𝐶3,4,4𝑦2 +𝐶2,3,4𝑦4

[𝑦2, 𝑦4] = (𝐶1,4,3𝐶2,3,4 +𝐶3,4,4)𝑦3 [𝑦3, 𝑦4] = (−𝐶1,4,3𝐶2,3,1)𝑦1 + (−𝐶1,4,3𝐶3,4,4)𝑦2 +𝐶3,4,4𝑦4

B About main maple scripts in this note

Only Engel-try-1.mpl had a 2 pages full explanation, but Engel-mySols-v1.mpl, DualAlg-Engel-v44.mpl, and
ZeroPlus-Engel-v2.mpl had no chance to be explaned at all.
In stead, we invite readers to\protect\vrule width0pt\protect\href{http://math.akita-u.ac.jp/\string~mikami/}{http://math.akita-u.ac.jp/$\sim$mikami/}.
There we prepare a tar-ball which includes revised maple scripts with the extension ".mpl.with", a small repository
big.mla, and please-read-me.txt.
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